This document is copyrighted with all rights reserved. Under the copyright laws, this document may not be copied in whole or in part or reproduced in any other media without the express written permission of Coherent, Inc. Permitted copies must carry the same proprietary and copyright notices as were affixed to the original. This exception does not allow copies to be made for others, whether or not sold, but all the material purchased may be sold, given or loaned to another person. Under the law, copying includes translation into another language.

Coherent, the Coherent Logo and LabLaser are registered trademarks of Coherent, Inc.

Every effort has been made to ensure that the data given in this document is accurate. The information, figures, tables, specifications and schematics contained herein are subject to change without notice. Coherent makes no warranty or representation, either expressed or implied with respect to this document. In no event will Coherent be liable for any direct, indirect, special, incidental or consequential damages resulting from any defects in its documentation.

This product is sold by Coherent pursuant to a limited sublicense under U.S. Patent No. Re 34,729. The rights that customers of Coherent receive through purchase of this product are restricted, and exclude any right to use the product in the telecommunications field.

Technical Support

In the US:

Should you experience any difficulties with your laser or need any technical information, please visit our web site www.Coherent.com. Additional support can be obtained by contacting our Technical Support Hotline at 800-367-7890 (408-764-4557 outside the U.S.) or E-mail (clg.tech.services@Coherent.com). Telephone coverage is available Monday through Friday (except U.S. holidays and company shutdowns).

If you call outside our office hours, your call will be taken by our answering system and will be returned when the office reopens.

If there are technical difficulties with your laser that cannot be resolved by support mechanisms outlined above, please E-mail or telephone Coherent Technical Support with a description of the problem and the corrective steps attempted. When communicating with our Technical Support Department, via the web or telephone, the model and Laser Head serial number of your laser system will be required by the Support Engineer responding to your request.

Outside the U.S.:

If you are located outside the U.S. visit our web site for technical assistance or contact, by phone, our local Service Representative. Representative phone numbers and addresses can be found on the Coherent web site, www.Coherent.com.

Coherent provides telephone and web technical assistance as a service to its customers and assumes no liability thereby for any injury or damage that may occur contemporaneous with such services. These support services do not affect, under any circumstances, the terms of any warranty agreement between Coherent and the buyer. Operation of any Coherent laser with any of its interlocks defeated is always at the operator’s own risk.
Table of Contents

Preface .. vi
U.S. Export Control Laws Compliance .. vi
Symbols Used in This Document .. vii

Laser Safety
- Laser Safety Precautions...2
- Electrical Safety Precautions ..3

Description and Specifications
- Continuous Wave (CW) vs. Modulation & Variable Power (MVP)......................................5
- LabLaser Universal Power Supply ...5
- Specifications..5
- Dimensions ..6
- Modulation Interface Cable ..7
- Connector Plug ...8

Installation
- Installing the Power Supply ..9

Operation
- Turn the Power Supply ON ..14
- Turn the Power Supply OFF ...15
- External Variable Power Control..16
- Analog Modulation of Laser Power..17
- Digital TTL Modulation of Laser Power..18

Troubleshooting
- Troubleshooting the Power Supply ...20

Warranty
- Responsibilities of the Buyer..21
- Limitations of Warranty...21

Accessories
- Power Meter Accessories..23
- First Recommendation..23
- Alternative Recommendation ...24

Parts List ..25
LIST OF ILLUSTRATIONS

1. LabLaser Shutter ... 3
2. Laser Class Labels ... 4
3. LabLaser Universal Power Supply Dimensions ... 6
4. Interface Cable, Part #31-1068-000 .. 7
5. Connector Plug, Part # 1057734 .. 8
6. Key Switch .. 9
7. AC Voltage Selection (115 V or 230 V) ... 10
8. Voltage Warning Label ... 10
9. Power Cord .. 10
10. Remote Interlock Switch Wiring .. 11
11. Defeated Safety Interlock with Shorting Plug .. 11
12. Defeated Interlock Connector with Short Circuit ... 12
13. LabLaser Direction Connection to the Power Supply .. 13
14. Interface Cable Installation Parts Connected for External Control and Modulation ... 13
15. Power Supply Keyswitch ON Position ... 14
16. Laser Output Power Control .. 15
17. Variable Power with a Voltage Source ... 16
18. Variable Power with a Potentiometer ... 16
19. Analog Control ... 17
20. Analog Modulation .. 17
21. Digital Control ... 18
22. Digital Modulation .. 19

LIST OF TABLES

1. LabLaser Universal Power Supply Specifications .. 5
2. Interface Cable .. 7
3. Parts List .. 25
This manual contains user information for the Diode LabLaser Universal Power Supply.

Read this manual carefully before operating the laser for the first time. Special attention should be given to the material in Laser Safety section, which describes the safety features built into the laser.

Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.

It is the policy of Coherent to comply strictly with U.S. export control laws.

Export and re-export of lasers manufactured by Coherent are subject to U.S. Export Administration Regulations, which are administered by the Commerce Department. In addition, shipments of certain components are regulated by the State Department under the International Traffic in Arms Regulations.

The applicable restrictions vary depending on the specific product involved and its destination. In some cases, U.S. law requires that U.S. Government approval be obtained prior to resale, export or re-export of certain articles. When there is uncertainty about the obligations imposed by U.S. law, clarification should be obtained from Coherent or an appropriate U.S. Government agency.
Symbols Used in This Document

This symbol is intended to alert the operator to the presence of important operating and maintenance instructions.

This symbol is intended to alert the operator to the danger of exposure to hazardous visible and invisible laser radiation.

This symbol is intended to alert the operator to the danger of Electro-Static Discharge (ESD) susceptibility.
Laser light, because of its special properties, poses safety hazards not associated with light from conventional sources. The safe use of lasers requires that all laser users and everyone near the laser system are aware of the dangers involved. The safe use of the laser depends upon the user being familiar with the instrument and the properties of coherent, intense beams of light.

Direct eye contact with the output beam from the laser will cause serious damage and possible blindness.

Laser beams can ignite volatile substances such as alcohol, gasoline, ether and other solvents, and can damage light-sensitive elements in video cameras, photomultipliers and photodiodes. Reflected beams may also cause damage. For these reasons, and others, the user is advised to follow the precautions below.

1. Observe all safety precautions in the user’s manual.
2. Extreme caution should be exercised when using solvents in the area of the laser.
3. Limit access to the laser to qualified users who are familiar with laser safety practices and who are aware of the dangers involved.
4. Never look directly into the laser light source or at scattered laser light from any reflective surface. Never sight down the beam into the source.
5. Maintain experimental setups at low heights to prevent inadvertent beam-eye encounter at eye level.

Laser safety glasses can present a hazard as well as a benefit. While they protect the eye from potentially damaging exposure, they block light at the laser wavelengths, which prevents the operator from seeing the beam. Therefore, use extreme caution even when using safety glasses.

6. As a precaution against accidental exposure to the output beam or its reflection, those using the system should wear laser safety glasses as required by the wavelength being generated.
Use the laser in an enclosed room. Laser light will remain collimated over long distances and therefore presents a potential hazard if not confined.

Post warning signs in the area of the laser beam to alert those present.

Advise all those using the laser of these precautions. It is good practice to operate the laser in a room with controlled and restricted access.

Laser Safety Precautions

1. This product is classified as a Class 3R or Class IIIB laser according to the CDRH/IEC standards. Reference the label attached to the front page for exact classification.

2. Since a laser beam can be damaging to the eyes, DO NOT look into the laser aperture when the laser is in operation. The power supply part #31-1050-000 emission indicator shows when the laser is on.

3. Be aware that laser light can also be dangerous when reflected off a mirror-like surface.

5. **SHUTTER:** On the LabLaser a special shutter feature is incorporated into the front of the module housing. The shutter is to provide a mechanical means of blocking the laser beam. The thumb switch is used to engage the shutter into the closed or open position. The VLM2 does not have the shutter feature; it is therefore not CDRH-compliant. It is the customer’s responsibility to follow the appropriate guidelines to achieve compliance.

6. Laser modules are not to be used with the part #31-1001-000 power supply. For CDRH compliance, the LabLaser must be used with the part #31-1050-000 power supply that offers the safety features of the emission indicator, key switch, delay, and interlock.
Electrical Safety Precautions

The LabLaser Universal Power Supply contains hazardous voltages. Do not disassemble the enclosure. There are no user-serviceable components inside. All units are designed to be operated as assembled. Warranty will be voided if the enclosure is disassembled.

CE MARK

Applicable EEC Directives:
89/336,92/31,93/68

Applicable Standards:
Generic Emission EN 50081-1
Generic Immunity EN 50082-1
Caution: ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and equipment and can easily discharge without detection. Although the LabLaser features impressive input protection, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation.
Coherent offers systems that are either continuous wave (CW) or have modulation and variable power (MVP).

The CW system does not include a control input and the power is fixed at its rated output. The following pages describe the installation and operation of the LabLaser products with MVP. All references to power control or modulation features and instructions do not apply to CW lasers.

The LabLaser Universal Power Supply, part #31-1050-000, is a complete system used to power the Coherent Diode LabLaser and VLM2, as well as other laser module systems. The power supply is equipped with a laser emission indicator, key switch, interlock, and five-second delay to allow the system to be CDRH-compliant for Class IIIa and IIIb lasers.

Table 1 describes the specifications of the LabLaser Universal Power Supply.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Coherent part #31-1050-000</td>
</tr>
<tr>
<td>Input</td>
<td>90-130 V or 180-260 VAC, 80/40 mA, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>IEC 320 input connector located on the back panel; the voltage selection switch is located on the bottom of the unit.</td>
</tr>
<tr>
<td>Output</td>
<td>6 VDC regulated, 250 mA, 5-second delay</td>
</tr>
<tr>
<td></td>
<td>3.5 mm stereo jack located on the front panel</td>
</tr>
<tr>
<td>Interlock</td>
<td>RCA jack located on back panel</td>
</tr>
<tr>
<td></td>
<td>Enabled: RCA plug installed with short circuit the power supply output</td>
</tr>
<tr>
<td></td>
<td>Disabled: RCA plug installed with an open circuit the power supply output</td>
</tr>
<tr>
<td>Key switch</td>
<td>Front panel key switch, key is non-removable when in ON position (1), removable in the OFF position (0)</td>
</tr>
<tr>
<td>Start Up</td>
<td>Smooth start</td>
</tr>
<tr>
<td>Control</td>
<td>Control knob located on front panel; approximately 10 turn</td>
</tr>
</tbody>
</table>
Figure 3 shows the dimensions of the LabLaser Universal Power Supply.

Table 1. LabLaser Universal Power Supply Specifications (Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>Green LED, illuminates when supply is ON</td>
</tr>
<tr>
<td>Weight</td>
<td>0.38 kg (0.83 lb.)</td>
</tr>
<tr>
<td>Size</td>
<td>See Figure 3, “LabLaser Universal Power Supply Dimensions”</td>
</tr>
</tbody>
</table>

Dimensions

Figure 3 shows the dimensions of the LabLaser Universal Power Supply.
Modulation Interface Cable

An external signal (see Figure 4) can be used to control the laser power. The signal can be connected to the laser with the optional interface cable, part #31-1068-000.

![Interface Cable Diagram]

Figure 4. Interface Cable, Part #31-1068-000

Table 2 describes the description and specifications of the interface cable.

Table 2. Interface Cable

<table>
<thead>
<tr>
<th>LASER: PHONO JACK</th>
<th>SIGNAL NAME</th>
<th>POWER SUPPLY: PHONO PLUG</th>
<th>MODULATION INPUT: BNC JACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>Ground</td>
<td>Case</td>
<td>Case</td>
</tr>
<tr>
<td>Center</td>
<td>Control (MOD. IN)</td>
<td>N/C</td>
<td>Center Pin</td>
</tr>
<tr>
<td>Tip</td>
<td>+6 VDC</td>
<td>Tip</td>
<td>No Connection (NC)</td>
</tr>
</tbody>
</table>

Note: The front panel variable power knob will not function with the interface cable installed. An offset voltage will need to be applied to the BNC jack to vary the power. To use the front panel knob connect the laser directly into the power supply without the interface cable.

Do not allow voltages greater than ±14 volts to come in contact with the Control Input of the MVP Laser. Take ESD precautions to insure that no static discharge damage occurs to the laser.

Do not connect the BNC center pin with the center of the Power Supply Plug. Damage to the power supply and the external control generator may occur if the two outputs are connected together.
Connector Plug

The connector plug (part #1057734) via the Modulation Interface Cable is a feature standard to all Coherent LabLasers, but is not included with the VLM2 or the power supply alone and must be purchased separately. The connectors are shown in Figure 5.

![Connector Plug Diagram]

The front panel knob on the Coherent part #31-1050-000 Universal Power Supply adjusts the output power for the MVP.

(Will not function with Interface Cable connected.)

Figure 5. Connector Plug, Part # 1057734
INSTALLATION

Installing the Power Supply

Tools and Materials Required

- Laser module mounted to the appropriate heat sink
- LabLaser Universal Power Supply
- Power cord
- Interface cable, part #31-1068-000 (optional)
- Customer-supplied Function Generator (optional)

Steps

1. Confirm that the key switch on the power supply is in the OFF position (Figure 6).

2. Confirm that the voltage selection switch on the bottom of the power supply is set to the correct line voltage, either 115V or 230V (Figure 7).

3. Peel off the voltage-warning label. This label is only attached on the outside edges of the power supply (Figure 8).

4. Plug the power cord into the back panel of the power supply (Figure 9).

Figure 6. Key Switch
Figure 7. AC Voltage Selection (115 V or 230 V)

Figure 8. Voltage Warning Label

Figure 9. Power Cord
5. Connect the appropriate interlock to the interlock input (Figure 10).

![Remote Interlock Switch Wiring](image)

Figure 10. Remote Interlock Switch Wiring

a. To enable the power supply for remote operation, wire the external interlock switch into the interlock input (Figure 10).

![Defeated Safety Interlock with Shorting Plug](image)

Figure 11. Defeated Safety Interlock with Shorting Plug

b. To defeat the remote interlock feature, connect the factory-supplied interlock connector (a shorted RCA jack) (Figure 11 and Figure 12).
3. If connecting the module to a function generator via the interface cable (shown in Figure 4), follow steps 6a to 6c. If not, go to step 7.
 a. Connect the interface cable to the laser via the phono jack.
 b. Connect the phono plug to the power supply.
 c. Connect the BNC jack to the function generator, as shown in Figure 14.

4. If not using a function generator, connect the laser module cable directly to the front of the power supply, as shown in Figure 13.

 Installing the shorting plug with the short circuit will bypass the remote interlock feature.

The power supply is now ready for operation.
Figure 13. LabLaser Direction Connection to the Power Supply

Figure 14. Interface Cable Installation Parts Connected for External Control and Modulation

OPERATION

Turn the Power Supply ON

Steps

1. Rotate the key switch into the ON position (Figure 15). The green LED on the front panel will illuminate to indicate that the power supply is active.

![Figure 15. Power Supply Keyswitch ON Position](image)

2. There will be a 5-second delay before the laser module activates. After 5 seconds elapse, the laser light will illuminate from the laser module aperture.

A break in the interlock circuit, an interruption on the line input, or turning the key off-on will cause the 5-second delay to be re-activated.

![5 Second Delay](image)
Direct eye contact with the output beam from the laser may cause serious damage and possible blindness.

3. The front panel knob on the power supply adjusts the output power (Figure 16).

![MVP Power Control](image)

Figure 16. Laser Output Power Control

CDRH-compliant lasers without shutters (such as the VLM2) are not to be used with the Coherent Basic Power Supply, part #31-1001-000.

For CDRH compliance, these laser modules must be used with the LabLaser Universal Power Supply, part number 31-1050-000, which offers the safety features of the emission indicator, key switch, delay, and interlock.

Turn the Power Supply OFF

Steps

1. Rotate the key switch on the power supply counter-clockwise into the OFF position. The green LED on the front panel will turn off.

2. All systems are now off.
External variable power control of the MVP laser module can be accomplished with either a variable DC voltage source (Figure 17) or a potentiometer (Figure 18). This applies to both the VLM2 and the LabLaser.
Analog Modulation of Laser Power

The MVP laser module can be modulated from an analog signal generator. This applies to both the VLM2 and the LabLaser. The signal generator must be a voltage source able to drive a 5 K Ohm load from +1.8 to +3.2 volts.

![LabLaser Modulation Cable](image)

![VLM2 with Three Wire Leads](image)

Figure 19. Analog Control

With analog modulation the output laser power will track the input voltage as shown below in an oscilloscope trace.

Figure 20. Analog Modulation
Digital TTL Modulation of Laser Power

With the MVP laser module, digital signal modulation can be accomplished with any TTL-compatible output signal. The TTL signal must be a voltage output able to drive a 5 KOhm load. This applies to both the VLM2 and the LabLaser.

![LabLaser Modulation Cable](image)

![VLM2 with Three Wire Leads](image)

Figure 21. Digital Control

With digital modulation, the output laser power will track the input voltage in an oscilloscope trace, as shown in Figure 22.

The 490 ns delay from the rising edge of the input to the rising edge of the output can be minimized by setting the “0” level at 1.8 volts DC instead of zero volts DC, as shown in Figure 22.
Ch 1: Input
TTL Voltage
“0” < 1.8 V
“1” > 3.2 V

Ch 2: Output
Laser Power

Figure 22. Digital Modulation
TROUBLESHOOTING

Troubleshooting the Power Supply

If power is not active after following the operation procedure, check the following conditions:

- Ensure that all plug connections are secure
- Ensure that the interlock circuit is closed
- Ensure that the voltage switch is in the correct position (see Figure 7). If the switch is set to 110 V and the unit is plugged into 220 V, the power supply will be damaged.

If all of these conditions are correct and power is still not flowing through the power supply, contact Coherent customer service.
Warranty

Coherent, Inc. warrants LabLaser laser systems to the original purchaser (the Buyer) only, that the laser system, that is the subject of this sale, (a) conforms to Coherent's published specifications and (b) is free from defects in materials and workmanship.

Laser systems are warranted to conform to Coherent's published specifications and to be free from defects in materials and workmanship for a period of twelve (12) months. Replacement units shipped within warranty, carry the remainder warranty of the failed unit.

Responsibilities of the Buyer

The Buyer is responsible for providing the appropriate utilities and an operating environment as outlined in the product literature. Damage to the laser system caused by failure of Buyer's utilities or failure to maintain an appropriate operating environment, is solely the responsibility of the Buyer and is specifically excluded from any warranty, warranty extension, or service agreement.

The Buyer is responsible for prompt notification to Coherent of any claims made under warranty. In no event will Coherent be responsible for warranty claims made later than seven (7) days after the expiration of warranty.

Limitations of Warranty

The foregoing warranty shall not apply to defects resulting from:

- Components and accessories manufactured by companies, other than Coherent, which have separate warranties
- Improper or inadequate maintenance by the Buyer
- Buyer-supplied interfacing
- Operation outside the environmental specifications of the product
- Unauthorized modification or misuse
- Improper site preparation and maintenance, or
- Opening the housing

Coherent assumes no responsibility for customer-supplied material. The obligations of Coherent are limited to repairing or replacing, without charge, equipment which proves to be defective during the
warranty period. Replacement sub-assemblies may contain reconditioned parts. Repaired or replaced parts are warranted for the duration of the original warranty period only. The warranty on parts purchased after expiration of system warranty is ninety (90) days. Our warranty does not cover damage due to misuse, negligence or accidents, or damage due to installations, repairs or adjustments not specifically authorized by Coherent.

Warranty applies only to the original purchaser at the initial installation point in the country of purchase, unless otherwise specified in the sales contract. Warranty is transferable to another location or to another customer only by special agreement that will include additional inspection or installation at the new site. Coherent disclaims any responsibility to provide product warranty, technical or service support to a customer that acquires products from someone other than Coherent or an authorized representative.

THIS WARRANTY IS EXCLUSIVE IN LIEU OF ALL OTHER WARRANTIES, WHETHER WRITTEN, ORAL OR IMPLIED, AND DOES NOT COVER INCIDENTAL OR CONSEQUENTIAL LOSS. COHERENT SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Coherent offers a variety of instruments for laser test and measurement. For additional detailed information, including product selection guides, please visit our web site at www.Coherent.com.

For the most common diagnostics needs—measuring the output power of the LabLaser—Coherent recommends two different types of power meters that are ideal fits to the LabLaser product family.

First Recommendation

The product combination of the FieldMaxII - Top Power Meter and the PS10Q amplified Sensor covers the entire wavelength range at any power level. The sensor is a temperature-stabilized thermopile that was designed for measurements in the ~100 µW-1 W region, called a PS10Q. We recommend the FieldMax-TOP to go with the PS10Q.

This is an affordable, versatile, easy-to-use digital meter designed for field service and production applications. The meter features an easy-to-read LCD with a backlight, and direct button-driven commands for simple, no-hassle use.

<table>
<thead>
<tr>
<th>FieldMaxII - Top Power Meter</th>
<th>Part #1072788</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS10Q High Sensitivity Amplified Sensors</td>
<td>Part #0012-4600</td>
</tr>
</tbody>
</table>
Alternative Recommendation

The LaserCheck™ Power Meter is a hand-held, inexpensive laser power meter specifically designed to provide power measurements in a small, lightweight, self-contained package that can easily be stored in a pocket or tool kit. With its compact size, it enables measurements in optical set-ups, where a standard detector head would not fit. With its built-in attenuator, this device is ready to measure output powers from 0.5 µW up to 1 W.

LaserCheck Power Meter | Part #33-1553
For complete descriptions, part numbers, and prices of these parts, contact your local Coherent representative and check Coherent’s web site, www.Coherent.com.

Table 3. Parts List

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode LabLaser Universal Power Supply</td>
<td>31-1050-000</td>
</tr>
<tr>
<td>Modulation Interface Cable</td>
<td>31-1068-000</td>
</tr>
<tr>
<td>RCA Plug, Non-Shorted</td>
<td>1040408</td>
</tr>
<tr>
<td>635 and 670 nm Laser Diode Modules, VLM2</td>
<td></td>
</tr>
<tr>
<td>670 nm, 0.95 mW, CW</td>
<td>31-0425-000</td>
</tr>
<tr>
<td>635 nm, 0.95 mW, CW</td>
<td>31-0441-000</td>
</tr>
<tr>
<td>670 nm, 4 mW, CW</td>
<td>31-0508-000</td>
</tr>
<tr>
<td>635 nm, 4 mW, CW</td>
<td>31-0524-000</td>
</tr>
<tr>
<td>635 nm Circular Beam Diode LabLasers</td>
<td></td>
</tr>
<tr>
<td>635 nm, 4 mW, CW</td>
<td>31-0128-000</td>
</tr>
<tr>
<td>635 nm, 4 mW, MVP</td>
<td>31-0136-000</td>
</tr>
<tr>
<td>635 nm, 7 mW, CW</td>
<td>31-0227-000</td>
</tr>
<tr>
<td>635 nm, 7 mW, MVP</td>
<td>31-0235-000</td>
</tr>
<tr>
<td>635 nm, 10 mW, CW</td>
<td>31-0326-000</td>
</tr>
<tr>
<td>635 nm, 10 mW, MVP</td>
<td>31-0334-000</td>
</tr>
<tr>
<td>635 nm Elliptical Beam Diode LabLasers</td>
<td></td>
</tr>
<tr>
<td>635 nm, 4 mW, CW</td>
<td>31-0102-000</td>
</tr>
<tr>
<td>635 nm, 4 mW, MVP</td>
<td>31-0110-000</td>
</tr>
<tr>
<td>635 nm, 7 mW, CW</td>
<td>31-0201-000</td>
</tr>
<tr>
<td>635 nm, 7 mW, MVP</td>
<td>31-0219-000</td>
</tr>
<tr>
<td>635 nm, 10 mW, CW</td>
<td>31-0300-000</td>
</tr>
</tbody>
</table>
Table 3. Parts List (Continued)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>635 nm, 10 mW, MVP</td>
<td>31-0315-000</td>
</tr>
<tr>
<td>635 nm Line Generator, 635 nm, 6 mW, CW</td>
<td>31-0268-000</td>
</tr>
<tr>
<td>LabLaser and VLM2 Mounts</td>
<td></td>
</tr>
<tr>
<td>Variable Angle Mount for 19 mm Diameter Diode Laser Modules, Inch, with Allen Head Screws</td>
<td>0221-449-00</td>
</tr>
<tr>
<td>Variable Angle Mount for 15 mm Diameter Diode Laser Modules, Inch, with Allen Head Screws</td>
<td>0221-437-00</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees centigrade or Celsius</td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>µ</td>
<td>Micron(s)</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer(s) = 10^{-6} meters</td>
</tr>
<tr>
<td>µrad</td>
<td>Microradian(s) = 10^{-6} radians</td>
</tr>
<tr>
<td>µsec</td>
<td>Microsecond(s) = 10^{-6} seconds</td>
</tr>
<tr>
<td>1/e^2</td>
<td>Beam diameter parameter = 0.13534</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampere(s)</td>
</tr>
<tr>
<td>BNC</td>
<td>Type of connector</td>
</tr>
<tr>
<td>CDRH</td>
<td>Center for Devices and Radiological Health</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter(s)</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous wave</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>HeNe</td>
<td>Helium Neon</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz or cycles per second (frequency) (= 1/pulse period)</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared (wavelength)</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram(s) = 10^3 grams</td>
</tr>
<tr>
<td>KHz</td>
<td>Kilohertz = 10^3 hertz</td>
</tr>
<tr>
<td>Kohm</td>
<td>Kohm(s)</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>m</td>
<td>Meter(s) (length)</td>
</tr>
<tr>
<td>mA</td>
<td>Milliamp(s) = 10^{-3} Amperes</td>
</tr>
<tr>
<td>mAmp</td>
<td>Milliampere(s)</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz = 10^6 hertz</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter(s) = 10^{-3} meters</td>
</tr>
<tr>
<td>mrad</td>
<td>Milliradian(s) = 10^{-3} radians (angle)</td>
</tr>
<tr>
<td>ms</td>
<td>Millisecond(s) = 10^{-3} seconds</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolt(s)</td>
</tr>
<tr>
<td>MVP</td>
<td>Modulation and variable power</td>
</tr>
<tr>
<td>mW</td>
<td>Milliwatt(s) = 10^{-3} Watts (power)</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer(s) = 10^{-9} meters (wavelength)</td>
</tr>
<tr>
<td>OEM</td>
<td>Original equipment manufacturer</td>
</tr>
<tr>
<td>rms</td>
<td>Root mean square (effective value of a sinusoidal wave)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RMA</td>
<td>Return material authorization</td>
</tr>
<tr>
<td>TEM</td>
<td>Transverse electromagnetic mode (cross-sectional laser beam mode)</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-to-transistor logic</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>Volt(s)</td>
</tr>
<tr>
<td>VAC</td>
<td>Volts, alternating current</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts, direct current</td>
</tr>
<tr>
<td>VLM</td>
<td>Visible laser module</td>
</tr>
<tr>
<td>W</td>
<td>Watt(s) (power)</td>
</tr>
</tbody>
</table>
INDEX

A
Analog control 17
Analog modulation 17
Analog modulation of laser power 17

C
Connecting the laser cable 13
Connector plug 8
Control 5
Correct AC voltage selection 10
CW vs. MVP 5

D
Digital control 18
Digital modulation 19
Digital TTL modulation of laser power 18
Dimensions
 Power supply 6

E
Electrical safety precautions 3

F
Five-second delay 14

I
Indicator 6
Input 5
Installing the LabLaser to the power supply 9
Interface cable installation parts connected 13
Interlock 5
Interlock connector 12

K
Key switch 5, 9

L
Laser class labels 4
Limitations of warranty 21

M
Modulation interface cable 7
 Description and specifications 7

O
Operation
 Analog modulation of laser power 17
 Digital TTL modulation of laser power 18
 Turn the LabLaser OFF 15
 Turn the LabLaser ON 14
 Variable power control 16
 Output 5

P
Power cord 10

S
Safety
 Class 2
 Electrical precautions 3
 ESD precautions 4
 Ignition 1
 Safety glasses 1
 Shutter feature 2
 Solvents 1
 Warning signs 2
Shutter
 Feature 2
 Open and closed 3
Size 6
Start up 5
Symbols used in this document vii

T
Troubleshooting
 Power supply 20

U
U.S. export control laws compliance
 Compliance issues vi
Universal power supply 5
 Dimensions 6
 Specifications 5

V
Variable power
 With a potentiometer 16
 With a voltage source 16
 Variable power control 16

W
Warranty limitations 21
Weight 6